對汽車地磅的這種干擾源來自外部,是有損于網絡信號的一種電磁現象。這種干擾的電磁能量通過某種媒體傳輸至測試儀表等敏感設備,而此設備又以某種形式表示“響應”,并產生干擾的“效果”,例如示波器圖像失真、雜散信號粒子、圖像對比度差以及幾何圖形彎曲等等,這個作用過程和結果,即稱之電磁干擾效應。顯而易見,電磁干擾已是測試技術發展中必須跨越的巨大障礙。為了保障測試技術設備的正常工作,我們必須研究分析電磁干擾,研究限制、抑制各類干擾的技術手段,提高測試環境的抗干擾能力,電子實驗室的電磁測試環境進行合理的設計。
電子技術的高速發展已讓世界進入了信息時代,電子地磅技術的廣泛應用使得應用的電子、電氣設備也越來越多和越來越復雜,電磁環境越來越惡劣。大中功率的發射機對非相應通道的高靈敏度測試儀器設備構成了災難性的干擾,使得測試儀器設備系統不能正常工作、性能降低甚至損壞。
傳導電磁干擾的路徑我們稱為電磁干擾的傳輸通道。就是將干擾源通過線路傳輸給輸入端,它在測試儀器儀表設備電路中產生相應的干擾電壓和電流。所以研究電磁干擾必須分析電磁干擾源和測試儀器儀表設備電路之間的傳輸路徑問題。
在電子儀器設備的控制網絡中,必須將有地磅信號的傳導干擾源的導線、元件或元件回線與連接接收網絡的布線、接收器回線隔離開來;用粗的隔離線和隔離套來減少級間的電容耦合;在控制電路中,使用的傳輸導線應盡量短,對高頻電路須特別注意這個問題,且應避免平行排列導線;對于放大器的輸入與輸出導線,必須避免相距過近及平行排列,以避免引起反饋交鏈和自激振蕩;在同一機箱內的幾套獨立功能的控制板若共用一套電源,必須同時配置高頻及低頻旁路退耦電容,以消除干擾。
輻射干擾
輻射干擾是以電磁波的形式通過空間以電磁波特性規律傳播的一種干擾源,它與傳導干擾的明顯區別在于前者是以導線器件作為傳輸通道的干擾,而后者是以自由空間傳播的一種電磁波干擾。
組成輻射干擾源必須具備兩個條件:首先是有產生電磁波的源泉,其后是將這種電磁波能量輻射出去。普通的裝置不一定能輻射電磁波,其構造必須是開放式的,相關尺寸和電磁波的波長必須是在同一等量級的。當然,無線電設備的天線是輻射電磁波zui有效的設備。另外,如果導線、結構件、元器件若能滿足輻射條件,則能起著發射天線的作用,也就是說它產生了天線效應。
解決輻射干擾的方法
如同解決傳導干擾的方法一樣,輻射干擾的解決也必須從輻射干擾源、傳輸路徑和接收器這三方面著手方能奏效。
怎樣減少發射類的儀器部件的輻射干擾對非本通道接收器的影響,從干擾源可從以下方面著手處理:傳導干擾源的處理和解決的方法同樣適用于輻射干擾的解決,還可對儀器的天線發射方向和極化方向進行改變,并在發射機的輸出端配置相應的濾波器,濾掉對接收機構成干擾的頻率。
從通信技術角度講,傳輸通道的損耗越小越好,這樣對有用信號衰減小,使接收質量高。但從接收器產生干擾來看,希望傳輸通道損耗能大些,將無用信號或者電磁輻射噪聲*損耗掉,這似乎是矛盾的,當然我們也可以增加傳輸通道的長度,使其損耗增加用以減少輻射干擾,但這樣增加器材成本一般很少使用。常規的方法是在輻射干擾源和接收器之間的通道上設置屏蔽,這樣能明顯降低輻射干擾。如果是直射波,可在傳輸通道上加阻擋層,用以切
斷接收器的輻射干擾通路。
對于接收器設置的靈敏度同樣存在著上述矛盾,對于通信來說,自然是靈敏度越高越好,這樣接收的距離才能遠。但從干擾角度講則相反,其靈敏度越低越好,低到根本收不到輻射干擾則更好。常規采用抗輻射干擾是在接收機輸入端加濾波器,濾掉相應的干擾頻率?;蚋淖兲炀€的接收方向,使接收機和干擾源天線不同極化和天線不對著干擾源,以減少干擾,這和處理傳導干擾也有許多相似之處。